FETAL FIBRONECTIN AND PRETERM LABOR

To the Editor: We applaud Lockwood et al. (Sept. 5 issue)1 for their multicenter study aimed at identifying a biochemical marker for preterm labor and delivery. However, it seems that the authors may have done themselves and the readers a disservice by not appreciating the implications of our previous collaborative efforts on this topic. For example, the "cellular" sources of "fetal" fibronectin had previously been unclear, but our studies revealed that the fibronectin was probably not fetal in origin. Specifically, using monoclonal antibody FDC-6 as an immunohistochemical probe, we found that oncofetal fibronectin is deposited by anchoring trophoblasts and chorionic trophoblasts in the extracellular matrix of the placental–uterine junction and chorion. 2,3 Our studies further identified the FDC-6–reactive epitope on fibronectin that was actively synthesized, secreted, and deposited in the extracellular matrix by cultured human trophoblasts. 2,4 These combined results gave us new insight into the possibility that the chorionic trophoblasts in the extracellular matrix might be an important source of cervicovaginal "fetal" fibronectin.5

The authors drew certain conclusions about the molecular form of the FDC-6–reactive material present in positive cervicovaginal samples obtained by swabbing. We, as well as the authors, had previously wondered whether the ROMcheck immunooassay truly detected fibronectin molecules, rather than simply small, degraded protein fragments. We answered these questions in our laboratory using the same samples collected and studied by Lockwood et al.1 and sent to us by Drs. Lockwood and Garite.4 By analyzing these clinical samples with the same Western immunoblot approach described for trophoblasts,2,5 we identified both intact and degraded forms of oncofetal fibronectin (Fig. 1). These results demonstrated that large molecular forms of fibronectin could leak into the cervix and vagina and suggested that the pathophysiological process of preterm labor might involve the proteolytic degradation of oncofetal fibronectin in the chorion.4

Although the degradation and release of oncofetal fibronectin from the fetal membranes may be a marker for preterm delivery, the general clinical usefulness of an assay for this marker remains in question. For example, how will it be possible to distinguish FDC-6–positive material derived from the chorion from that derived from the amniotic fluid, where oncofetal fibronectin is present in high concentrations?2 In addition, since there is apparently substantial oncofetal fibronectin in third-trimester maternal serum,6 it is hard to understand how some patients who were found on gross examination to have blood in the vagina could test negative on the authors' sensitive immunooassay. A further consideration not addressed experimentally by the authors is the specificity of FDC-6 binding to fibronectin isoforms circulating in the plasma of pregnant and nonpregnant women. We should be cautious not to overinterpret the clinical importance of material in cervicovaginal secretions found to be positive by ROMcheck assay. However, on the basis of what we have learned about oncofetal fibronectins, we should encourage the pursuit of earlier and more specific markers for preterm inflammatory processes in the chorionic membrane.

RONALD F. FEINBERG, M.D., PH.D.
University of Pennsylvania Medical Center
Philadelphia, PA 19104

HARVEY J. KILMAN, M.D., PH.D.
Yale University School of Medicine
New Haven, CT 06510


Figure 1. Immunoblotting with Monoclonal Antibody FDC-6 of Cervicovaginal-Secretion Samples from Four Patients Who Delivered Prematurely, with (Lanes A and B) or without (Lanes C and D) Spontaneous Rupture of Membranes

In lanes A and B 10 μl of ROMcheck sample was loaded, and in lanes C and D 50 μl of ROMcheck sample was loaded. The samples were electrophoresed in 6 percent sodium dodecyl sulfate–polyacrylamide gels under reducing conditions, electrotransferred to nitrocellulose filters, and assayed for the presence of oncofetal fibronectin with the monoclonal antibody FDC-6, as previously described.3 Patients with ruptured membranes generally had intact oncofetal fibronectin (lanes A and B), whereas patients with intact membranes had intact fibronectin (data not shown) as well as degraded moieties reactive with the antibody (lanes C and D, indicated by arrows). Other antifibronectin antibodies that are not specific for the oncofetal domain reacted with these samples in a similar pattern.
To the Editor: Lockwood et al. reported that the presence of cervico-vascular fetal fibronectin at concentrations above 0.05 μg per milliliter identifies a subgroup of women at increased risk for preterm delivery. They found that the mean (±SD) fetal-fibronectin concentration in maternal plasma were 2.0±2.3 μg per milliliter in the second trimester and 3.5±2.2 μg per milliliter in the third trimester. Hence, maternal plasma levels of fetal fibronectin are 40 and 70 times greater than the cervicovaginal threshold value in the second and third trimesters, respectively. We are concerned that the presence of fetal fibronectin in cervicovaginal secretions may simply reflect contamination by maternal blood, which is frequently present in the secretions obtained from patients admitted with preterm contractions. Although the authors excluded patients with clinically apparent vaginal bleeding, they did not exclude those with occult blood. Using the data presented in this study, we have calculated that secretions with a hematocrit of 1 percent or less, in which blood would not be clinically apparent, would nevertheless contain enough maternal plasma to yield a positive test for fetal fibronectin, regardless of the contribution of the secretions themselves. We suggest, therefore, that only the simultaneous measurement of blood and fetal fibronectin in cervicovaginal secretions will exclude the possibility that the presence of fetal fibronectin merely reflects the presence of maternal blood, which itself could define a subgroup of women at high risk for preterm delivery.

YEOI SADOVSKY, M.D.
STEVEN A. FRIEDMAN, M.D.
University of California, San Francisco, CA 94143

San Francisco, CA 94143

The authors reply:

To the Editor: Drs. Feinberg and Kliman question the origin of cervical and vaginal fetal fibronectin that we found to be associated with preterm delivery. They contend that previous reports 1–3 localizing a substance reactive to FDC-6 to the placental and membrane–uterine junction demonstrated an extravillous–trophoblast source of fetal fibronectin. Such a conclusion appears unwarranted, since maternal decidua cells were not excluded as a potential site of synthesis. Our study addressed this deficiency, since it minimized antigen masking 4 potentially present in the earlier study and used parallel immunohistochemical staining for cytokeratin and vimentin to indicate that the cells surrounded by FDC-6–reactive material had the immunohistochemical properties of cytotrophoblasts, not decidual cells. 5 Furthermore, we showed that decidua-free regions of dichorionic membranes displayed intense chorionic FDC-6 immunoreactivity. We do concur that the finding of fetal-fibronectin release by cultured trophoblasts from full-term infants 6 is suggestive of a trophoblastic source.

Drs. Feinberg and Kliman interpret their previously reported immunoblot data 1 as consistent with the proteolytic degradation of the choric extracellular matrix in some patients. However, that study did not control for exposure to cervical and vaginal protease activity. Such a control is crucial to their interpretation, since fetal fibronectin may be released intact from the chorion and subsequently degraded by cervical and vaginal proteases.

Drs. Sadowsky and Friedman suggest that occult vaginal blood could serve as a source of cervical and vaginal fetal fibronectin. We believe that this is not likely to be the case. Levels of cervical and vaginal fetal fibronectin were reported as micrograms per milliliter of extraction buffer, not blood. Therefore, even pure maternal blood with a hematocrit of 30 percent and a whole-blood fetal-fibronectin level of 2 μg per milliliter would, after a minimal dilution of 1:6 in buffer, result in a maximum fetal-fibronectin concentration of 300 μg per milliliter of buffer. Thus, a sample buffer would have to have a visually apparent hematocrit of more than 5 percent for blood to account for the fetal fibronectin detected.

In addition, we analyzed 843 cervical and vaginal samples obtained from 81 women between 24 and 34 weeks of gestation for both free hemoglobin 6 and fetal fibronectin. The threshold for detecting hemoglobin was 0.05 μg per milliliter. Of the 843 samples, 2.0 percent were positive for both blood and fetal fibronectin, whereas hemoglobin alone was detected in 6.3 percent and fetal fibronectin alone in 11.1 percent. Thus, 85 percent of samples with fetal fibronectin contained no detectable hemoglobin. Moreover, the presence of hemoglobin was not predictive of preterm delivery. This discordancy indicates that gross and occult blood are not primary sources for cervical and vaginal fetal fibronectin.

CHARLES J. LOCKWOOD, M.D.
Mount Sinai School of Medicine
New York, NY 10029

Sunnyvale, CA 94089

New York, NY 10029

Andrew E. Senyei, M.D.
Adeza Biomedical
M. Renate Dische, M.D., Ph.D.
Mount Sinai School of Medicine
David Casal, Ph.D.
Adeza Biomedical
Kumudini D. Shah, M.D.
Swan N. Thung, M.D.
Mount Sinai School of Medicine
New York, NY 10029

Sunnyvale, CA 94089

Sunnyvale, CA 94089

David Casal, Ph.D.
Adeza Biomedical
Kumudini D. Shah, M.D.
Swan N. Thung, M.D.
Mount Sinai School of Medicine
New York, NY 10029

Sunnyvale, CA 94089

Sunnyvale, CA 94089

Liane Deligdisch, M.D.
Mount Sinai School of Medicine
New York, NY 10029

Thomas J. Garite, M.D.
University of California at Irvine
Orange, CA 92668

University of California at Irvine


CIRCADIAN VARIATION IN VASCULAR TONE

To the Editor: The possibility of a circadian variation in the incidence of stroke, myocardial infarction, and sudden death has intrigued investigators in recent years. 1–3 Although some workers have implicated the sympathetic nervous system in this purported temporal pattern of heart disease, others have dismissed such an association. The reasons include the findings that catecholamine secretion does not increase during spontaneous episodes of ST-segment elevation 4 and that ischemic changes in ST waves during early-morning sleep are not preceded by increases in heart rate and do not appear otherwise to involve increased adrenergic activity. 5

The report by Panza et al. (Oct. 3 issue) 6 that the α-adrenergic–receptor antagonist phentolamine caused greater forearm vasodilation in the morning than in the afternoon or evening, but that sodium nitroprusside, a nonspecific antagonist, was equally active at all three times raises again the question of the participation of the adrenergic axis in cardiovascular disease. Two points, however, render the study questionable. First, phentolamine is not a specific α-adrenergic antagonist. Second, the finding that sodium nitroprusside induced an equivalent reduction in vasomotor tone at all three times of day provides no insight into tone-generating mechanisms, adrenergic or otherwise.